Preliminary Results of Arsenic Found in Drinking Water Among Arizonan and Sonoran Residents

Jason Roberge, MPH
Jason Mihalic
The University of Arizona and
Arizona Department of Health Services

Study Goals of the Binational Arsenic Exposure Survey (BAsES)

- To evaluate associations between elevated arsenic exposure and selected genetic polymorphisms
- Determine arsenic exposure in well defined populations consuming water at varying As levels

Design

- Cross-sectional study
- Recruit individuals from Arizona & Sonora
 - Random selection of households from selected communities or neighborhoods
 - Adults = age 18, men and women
 - 350 households
- Questionnaires and biological data

Participant Recruitment

- Arizona (152 households)
 - Ajo (n=25)
 - San Manuel (n=31)
 - N. & S. Tucson (n=47)
 - New River (n=49)
- Gender (225 people)
 - Males 99
 - Females 126
- Sonora
 - Hermosillo (n=100)
 - Communities in Yaqui Valley (n=100)
As levels - Ciudad Obregón

- Wells Sampled in the Yaqui Valley:
 - 73 wells sampled

As levels - Hermosillo

- Water towers sampled in Hermosillo:
 - 41 wells sampled

Procedures

- **Samples**
 - Blood
 - DNA
 - Serum
 - Buccal cells
 - First morning urine void
 - Toenail clippings
 - Anthropometric:
 - Height, weight, waist and hip circumference
 - Water samples from drinking and cooking sources

- **Measurements**
 - Urine analysis and water screen
 - 14 Metals
 - Arsenic Speciation
 - Store for subsequent analysis
 - Toenail samples for As levels
 - Serum, buccal cells, urine, water

Questionnaires

- **Individual questionnaire**
 - Demographics
 - Residential history
 - Smoking history
 - Alcohol use
 - Occupation and hobbies
 - Health
 - Physical activity

- **Household questionnaire**
 - Year the house was built, phones in the home, running water, etc.

- **24 hour diet recall**

- **Food frequency questionnaire**
 - ~50 foods known to have elevated arsenic levels
 - How often have you eaten the foods in the past year?
 - Have you eaten the foods in the past 3 days?

- **Water Consumption Sheet**
 - How often do you drink or cook using the water from each water source in the home?
Water samples

- Samples were taken from every drinking source in the home: fridge, water filtered through R.O., sink, etc.
- If a water softener was used on the house then water was collected from the spigot outside or from the well.
- The following preliminary results are from the unfiltered water source coming into the home

Water consumption of 143 primary respondents

<table>
<thead>
<tr>
<th>Water consumption</th>
<th>Unfiltered water</th>
<th>Reverse Osmosis</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of samples</td>
<td>143</td>
<td>140</td>
<td>283</td>
</tr>
<tr>
<td>Number of samples with non-detectable As level</td>
<td>83</td>
<td>20</td>
<td>103</td>
</tr>
<tr>
<td>Number of samples >10 ppb of As range</td>
<td>60</td>
<td>44</td>
<td>104</td>
</tr>
<tr>
<td>Median</td>
<td>3.80 ppb</td>
<td>12.55 ppb</td>
<td>7.55 ppb</td>
</tr>
<tr>
<td>Interquartile range</td>
<td>11.60 ppb</td>
<td>14.00 ppb</td>
<td>20.10 ppb</td>
</tr>
</tbody>
</table>

A primary respondent may report more than one drinking and/or drinking/cooking and/or cooking source.

Estimated water arsenic consumption per person per day

<table>
<thead>
<tr>
<th>Water consumption</th>
<th>Unfiltered water</th>
<th>Reverse Osmosis</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of people consuming >10 ppb of As range</td>
<td>60</td>
<td>44</td>
<td>104</td>
</tr>
<tr>
<td>Median</td>
<td>3.80 ppb</td>
<td>12.55 ppb</td>
<td>7.55 ppb</td>
</tr>
<tr>
<td>Interquartile range</td>
<td>11.60 ppb</td>
<td>14.00 ppb</td>
<td>20.10 ppb</td>
</tr>
</tbody>
</table>

Estimated arsenic concentration per person = \left(\sum_{i=1}^{n} \text{frequency} \times \text{As concentration} \right) / \text{number of drinking water samples}

- Frequency (frequency of consumption): frequently = 0.70, occasionally = 0.25, rarely = 0.05
- non-detectable = 1.75 ppb, this is half the detection limit (3.5 ppb)
Mexico Results

- Sampling is completed
- Sample testing and data entry are ongoing
- Expect to have all of the samples analyzed by the end of March

ADHS Public Health Laboratory

State Capitol Complex:
- Van Buren & 17th Ave
Chemistry Sections:
- Inorganic
- Organic
- Hazmat
- Food Emergency Response Network (FERN)
- Chemical Emergency Response (CT)

Chemical Emergency Response

Program Responsibilities
- LRN-C Lab for Arizona (CDC)
 - Chemical Terrorism (CT) preparedness & response
 - Chemical Unknown Identification
 - Suspicious powders and samples of interest to law enforcement & County Health Departments
- Biomonitoring
 - Rocky Mountain Biomonitoring Consortium (RMBC)
 - Collaborations with Arizona’s Universities

Instrumentation

- Organic
 - Liquid Chromatograph - Tandem Mass Spectrometer (LC/MS/MS): Applied Biosystems API 4000
 - Gas Chromatograph - Mass Spectrometer (GC/MS): Agilent 6890/5973
- Inorganic
 - Inductively Coupled Plasma - Mass Spectrometer (ICP-DRC-MS): PerkinElmer ELAN DRCII
Instrument Used for Project

- ICP-DRC-MS
- PerkinElmer ELAN DRCII
- High Performance Liquid Chromatography (HPLC) Front End
- Arsenic Speciation
 - arsenite (valence III)
 - arsenate (valence IV)
 - monomethylarsonic acid (MMA)
 - dimethylarsinic acid (DMA)
 - arsenobetaine (AsB)

Analytical Methods Used

- The urine samples were analyzed according to LRN-C metals method for toxic elements
- The water samples were screened using a modified toxic metals LRN-C method for urine and is not EPA compliant for drinking water
- 14 Metals: Antimony, Arsenic, Barium, Beryllium, Cadmium, Cesium, Cobalt, Lead, Molybdenum, Platinum, Selenium, Thallium, Tungsten, & Uranium

Implications of Biomonitoring Study

Arizona Public Health Perspective
- Arsenic is a problematic metal for households serviced by well water
- Many people do not know how to contact private laboratories for testing of drinking water

Laboratory Perspective
- ADHS has the instrumentation and expertise available to assist future biomonitoring projects

Future of Biomonitoring in Arizona

Collaborative Effort
- This project between UofA and ADHS is a pilot project that worked
- Brain power and legwork of the university system coupled with the analytical capacity of ADHS is a powerful combination
- One that ultimately benefits the children of Arizona and border states
Research Team

- University of Arizona
 - Robin Harris, PhD
 - Jason Roberge, MPH
 - Clark Lantz, PhD
 - Jeff Burgess, MD
 - Walt Klimeski, PhD
 - Mary Kay O’Rourke, PhD
 - Elena Martinez, PhD
 - Julia Gerace
 - Andrew Abalos
 - Roberta Kline

- ADHS
 - Jason Mihalic
 - Patricia Adler
 - Marcus Castle

- ITSON
 - Mercedes Meza, PhD
 - Jaime Garafita Payan
 - Fernando Lares Villa
 - Anacleto Felix Fuentes
 - Guadalupe Aguilar

- UNISON
 - Luis Gutiérrez, PhD
 - Maria Burboa Zazueta

Contact info

Jason Roberge, MPH
UA, Department of Epidemiology and Biostatistics
roberge@email.arizona.edu

Jason Mihalic
Manager Chemical Emergency Response
Arizona Department Health Services
602-542-3753
mihalij@azdhs.gov