RESPIRATORY EFFECTS OF LOW-LEVEL ARSENIC EXPOSURE IN DRINKING WATER

Jefferey L. Burgess, MD, MPH
University of Arizona Mel and Enid Zuckerman College of Public Health
Scott Boitano, Ph.D.
Arizona Respiratory Center
R. Clark Lantz, PhD
Cell Biology
Arizona Health Sciences Center
College of Medicine

Arsenic Exposure Overview

• Widespread metalloid toxicant
• Associated with cancer and respiratory effects at >100 ppb
• EPA standard 10 ppb

Respiratory Effects at High Concentrations

• In West Bengal, a 100 ppb increase in arsenic was associated with a 45.0 ml decrease in FEV1.
• In Taiwan, arsenic exposure has been associated with increased mortality from bronchitis.
• In Chile, arsenic exposure was associated with increased mortality from COPD among women and men aged 30-39 years, suggesting harmful effects of arsenic exposure in childhood.
• Also in Chile, children exposed to arsenic with dermatological manifestations had excessive rates of both chronic cough and bronchopulmonary disease.
Interdisciplinary Research on Respiratory Effects of Low-Level Arsenic Exposure

- EPA National Center For Environmental Research (NCER) Science to Achieve Results (STAR) Grant
- *In vitro* studies -- Cell Models to Study Mechanisms
- *In vivo* studies -- Animal Models to Evaluate Lung Biomarkers -- Proteomic Approach
- Human Populations -- Integrate Findings at Human Health Endpoint

Animal Models to Identify Protein Changes

- Mouse model
- Perform bronchiolar lavage
- Proteomic analysis

Protein (spot) changes include:
- Glutathione-S-transferase W-1 (GST W-1) (control 3)
- Phosphatase and tensin homolog (PTEN) (control 19)
- Alpha-1-antitrypsin (control 10)
- Receptor for advanced glycation end products (RAGE) (control 1 and 2)
Airway Remodeling as a Target

- Abnormal airway remodeling is an important step in the development of chronic lung disease.
- Matrix metalloproteinases (MMPs) play essential roles in lung remodeling.
- Tissue inhibitor of metalloproteinase 1 (TIMP-1) inhibits MMPs.
- Decreased receptor for advanced glycation end products (RAGE) may increase RAGE activation and MMP-9 production.
- AAT deficiency is a known risk factor for lung disease.

Ajo Study

- NIEHS Community-Based Prevention/Intervention Research (CBPIR) Grant
- In Ajo, AZ arsenic in tap water is elevated, averaging 20.3 ppb with a range of 10.8-27.6 ppb
- In Tucson arsenic in tap water averages 4.0 ppb with a range of 0.8-9.5 ppb
- Study questions:
 1) Does provision of bottled drinking water reduce urinary arsenic concentrations?
 2) Can we discover biomarkers of low-dose arsenic exposure?

Ajo Study

Subjects
- 35 households in Ajo
- 30 households in Tucson
- Only subjects ≥18 years old
- Same house for ≥3 years
- Drink untreated tap water
- No occupational arsenic exposure
- Non-smokers

Sample collection
- Tap water
- Urine
- Questionnaire
- Buccal swabs
- Induced sputum
- Toenails
Human Sputum Studies

MMP-9/TIMP-1

![Graph showing MMP-9/TIMP-1 regression model]

In MMP-9/TIMP-1 Regression Model

<table>
<thead>
<tr>
<th>Predictor variable</th>
<th>Coefficient</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Town</td>
<td>0.178</td>
<td>0.673</td>
</tr>
<tr>
<td>Asthma</td>
<td>-0.151</td>
<td>0.696</td>
</tr>
<tr>
<td>Urinary As</td>
<td>0.031</td>
<td>0.005</td>
</tr>
<tr>
<td>MMA/(As³⁺ + As⁵⁺)</td>
<td>0.119</td>
<td>0.136</td>
</tr>
</tbody>
</table>

* Using the natural logarithm and excluding sRAGE outliers

Human Sputum Studies

TIMP-1

![Graph showing TIMP-1 relationship]

Human Sputum Studies

sRAGE

![Graph showing sRAGE relationship]

* Using the natural logarithm and excluding sRAGE outliers
Regression Results for sRAGE

<table>
<thead>
<tr>
<th>Outcome</th>
<th>N</th>
<th>R²</th>
<th>Variables</th>
<th>Coef.</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log sRAGE</td>
<td>47</td>
<td>0.2095</td>
<td>Town</td>
<td>0.011</td>
<td>0.973</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Diabetes</td>
<td>0.761</td>
<td>0.079</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BMI</td>
<td>0.091</td>
<td>0.002</td>
</tr>
<tr>
<td>Urinary As</td>
<td></td>
<td></td>
<td></td>
<td>-0.021</td>
<td>0.016</td>
</tr>
</tbody>
</table>

* Excludes outliers

AAT/Total Protein regression model*

<table>
<thead>
<tr>
<th>Predictor variable</th>
<th>Coefficient</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Town</td>
<td>-0.1008</td>
<td>0.753</td>
</tr>
<tr>
<td>Total urinary Inorganic As</td>
<td>-0.0193</td>
<td>0.031</td>
</tr>
<tr>
<td>MMA/(As³⁺ + As⁵⁺)</td>
<td>-0.1436</td>
<td>0.020</td>
</tr>
<tr>
<td>Toenail selenium</td>
<td>0.2761</td>
<td>0.005</td>
</tr>
<tr>
<td>Constant</td>
<td>0.1537</td>
<td>0.794</td>
</tr>
</tbody>
</table>

* N = 51, adjusted R² = 0.2455

Postulated Mechanisms of Toxicity

Study Aims: 1=Aim 1 (In-vitro); 2=Aim 2 (In-vivo); 3=Aim 3 (Human)

Summary

- At high concentrations arsenic causes respiratory disease.
- We have found evidence of delayed wound healing at concentrations as low as 30 ppb in cellular models.
- At low concentrations, arsenic causes alterations in lung protein expression in mice.
- In humans, low-level arsenic exposure (at 20 ppb and below) causes changes in lung proteins associated with development of lung disease.
- Lung injury may exacerbate this process.
Next Steps

• NIEHS Grant Application
• Determine the mechanisms of arsenic-induced alterations in epithelial permeability and wound repair.
• Determine the extent of lung remodeling and physiological changes associated with low-level arsenic exposure.
• Determine the relation between arsenic-induced alterations in pulmonary biomarkers and clinical findings.

Questions?